An Unsupervised Model of Infant Acoustic Speech Segmentation

نویسنده

  • Matthew Miller
چکیده

There is a long standing hypothesis in Developmental Psychology that children use statistical information to segment acoustic speech streams into words. Additionally, several experiments have demonstrated that infants are able to find word breaks using distributional cues. In this paper we propose an algorithm for the unsupervised segmentation of audio speech, based on the Voting Experts (VE) algorithm. We show that this algorithm can reproduce results obtained from segmentation experiments performed with 8-month-old infants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised speech segmentation: an analysis of the hypothesized phone boundaries.

Despite using different algorithms, most unsupervised automatic phone segmentation methods achieve similar performance in terms of percentage correct boundary detection. Nevertheless, unsupervised segmentation algorithms are not able to perfectly reproduce manually obtained reference transcriptions. This paper investigates fundamental problems for unsupervised segmentation algorithms by compari...

متن کامل

Unsupervised Phoneme Segmentation Using Transformed Cepstrum Features

One of the basic problems in speech engineering is phoneme segmentation, that is, to divide a speech stream into a string of phonemes. Automatic Speech Recognition (ASR) models often require reliable phoneme segmentation in the initial training phase, and Text-to-Speech (TTS) systems need a large speech database with correct phoneme segmentation information for improving the performance. Human ...

متن کامل

Making Sense of Sound: Unsupervised Topic Segmentation over Acoustic Input

We address the task of unsupervised topic segmentation of speech data operating over raw acoustic information. In contrast to existing algorithms for topic segmentation of speech, our approach does not require input transcripts. Our method predicts topic changes by analyzing the distribution of reoccurring acoustic patterns in the speech signal corresponding to a single speaker. The algorithm r...

متن کامل

Unsupervised Extraction of Recurring Words from Infant-Directed Speech

To date, most computational models of infant word segmentation have worked from phonemic or phonetic input, or have used toy datasets. In this paper, we present an algorithm for word extraction that works directly from naturalistic acoustic input: infant-directed speech from the CHILDES corpus. The algorithm identifies recurring acoustic patterns that are candidates for identification as words ...

متن کامل

Unsupervised Hidden Markov Modeling of Spoken Queries for Spoken Term Detection without Speech Recognition

We propose an unsupervised technique to model the spoken query using hidden Markov model (HMM) for spoken term detection without speech recognition. By unsupervised segmentation, clustering and training, a set of HMMs, referred to as acoustic segment HMMs (ASHMMs), is generated from the spoken archive to model the signal variations and frame trajectories. An unsupervised technique is also desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009